数学是什么?
数学是研究现实世界中数量关系和空间形式的科学。
由于生活和劳动上的需求,原始人用手指或实物计数进而发展到用数字计数。在此基础上数学得以发展。在中国,最迟在商代,就已出现用十进制数字表示大数的方法;在欧洲,继承了巴比伦、埃及、希腊文化,对数的性质及这些性质间的逻辑关系进行了研究。在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。在近代,数的概念更进一步抽象化并依据数的不同运算规律而对一般的数系统进行独立的理论探讨,形成数学中的若干不同分支。
开平方和开立方是解最简单的高次方程。在中国,《九章算术》中,已出现解某种特殊形式的二次方程。在9世纪的阿拉伯,花拉子米的著作阐述了二次方程的解法,通常被视为代数学的鼻祖。中国古代数学致力于方程的具体求解,而导源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。16世纪时,F.韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质的探讨,则从线性方程组导致行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗瓦理论与群论的创立。
空间形式的研究属于几何学的范畴。古代民族都具有空间形式的简单概念而往往以图画来表示。中国古代夏禹治水时即已有规、矩、准、绳等测量工具。《墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽《海岛算经》给出了用矩观天测地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股理论外,还提出了若干一般原理以解多种问题。但自五代(约10世纪)以后,中国在几何学方面的建树不多。中国几何学以测量与面积体积的量度为中心,古希腊的传统则重视空间形式的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,对整个数学发展产生了深刻影响。特别是平行公理的研究,导致了19世纪非欧几里得几何学的产生。
18世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。由于自然界的客观规律大多是以微分方程的形式表现的,微分方程的研究一开始就受到重视。微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了内在的现代微分几何。19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。对客观世界中随机现象的分析,产生了概率论。第二次世界大战军事上的需要以及大工业与管理的复杂化产生了运筹学、系统论、信息论、控制理论与数理统计学等学科。实际问题要求具体的数值解答,产生了计算数学。选择最优途径的要求又产生了各种优化的理论、方法。力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。
此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些高深数学。19世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展。也产生了把数学看作一个整体的各种思潮和数学基础学派。
在数学的蓬勃发展过程中,数量关系与空间形式的概念不断扩大,日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。如把函数看成是某种空间的一个点之类。这种做法之所以行之有效,归根结蒂还是因为数学家们已经熟悉了那种简易的数学运算与图形关系。而后者又有着长期深厚的现实基础。而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。
由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界中。生活实践与技术需要始终是数学的真正源泉。总之,数学正随着新的技术革命而不断发展。
|